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Abstract—When orchestrating Web service workflows, the
geographical placement of the orchestration engine(s) can
greatly affect workflow performance. Data may have to be
transferred across long geographical distances, which in turn
increases execution time and degrades the overall performance
of a workflow. In this paper, we present a framework that,
given a DAG-based workflow specification, computes the op-
timal Amazon EC2 cloud regions to deploy the orchestration
engines and execute a workflow. The framework incorporates a
constraint model that solves the workflow deployment problem,
which is generated using an automated constraint modelling
system. The feasibility of the framework is evaluated by
executing different sample workflows representative of sci-
entific workloads. The experimental results indicate that the
framework reduces the workflow execution time and provides
a speed up of 1.3x-2.5x over centralised approaches.

Keywords-workflow engine; optimal deployment; cloud com-
puting; workflow execution

I. INTRODUCTION

Scientists often combine highly distributed data and ser-

vices through a workflow [1]: a set of coordination rules

that form a distributed application, which is executed by

a workflow engine. A workflow is usually specified from

the view of a single participant, and orchestrated using a

single centralised engine. This means that a central engine

coordinates all the services involved in a workflow, and

all data flow through it. The location of the engine is not

typically a factor, which is considered when executing a

workflow. However, for collaborative scientific workflows

in which the services are data-intensive and spread across

multiple geographical regions [2], the data might have to

move across long geographical distances to flow through

the centralised workflow engine. This in turn degrades the

overall performance of a distributed workflow [3].

One solution to this problem is to move the engine to

an optimal location based on the geographical location of

the services in a workflow. Using public cloud infrastructure

such as Amazon Elastic Compute cloud (EC2)1 it is possible

to deploy a workflow engine automatically into a suitable

region that is geographically closer to the web services in the

workflow - the expectation being that the overall execution

times of a workflows will be reduced. A more sophisticated

1http://aws.amazon.com/ec2/

approach, adopted in this paper, is a decentralised deploy-

ment in which a number of engines are deployed across the

EC2 regions to orchestrate the workflow. When workflows

consist of a large number of geographically distributed

services it is a considerable challenge to determine how to

locate the orchestration engines for optimal execution times.

Consider the fragment of a workflow comprising two web

services WS1 and WS2 shown in Figure 1a. Figure 1b

shows a centralised approach in which an engine E1 invokes

WS1 and uses its output to invoke WS2. The location

of E1 with respect to the web services is crucial to the

overall execution time of the workflow. Figure 1c shows a

decentralised approach where two engines E1 and E2 are

employed. Such a decentralised deployment can potentially

reduce execution time by placing engines closer (in terms

of network distance) to the web services.

(a) Workflow (b) Centralised (c) Decentralised

Figure 1: Workflow fragments

In this paper, we investigate where the engines need to

be deployed in the cloud, whether in a centralised or a

decentralised fashion, so as to minimise the total expected

execution time of the workflow. In addition to the workflow

itself, the parameters of this problem are based on the

communication costs between each web service and possible

locations for the engines. The solution to the problem is the

locations of engine invoking web services in the workflow.

Our research is facilitated by the development of a

multi-component framework, which employs a constraint

programming solver [4] to find an optimal deployment of

workflow engines on the cloud. The engines support high

levels of decentralisation by allowing intermediate data to

be transferred between one another.

The remainder of this paper is structured as follows:

Section II presents a model of the optimal deployment prob-
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lem. Section III introduces the framework and the workflow

engine implemented in this research. Section IV considers

the experimental studies and discusses the results. Section V

presents related work and Section VI concludes this paper.

II. WORKFLOW DEPLOYMENT PROBLEM

In this section, we present a mathematical model, which

captures the workflow deployment problem and how it is

solved using constraint programming.

A. Problem Modelling

Consider a set of web services and engines, which are

represented as S = {s1, s2, · · · } and E = {e1, e2, · · · }
respectively. For simplicity, we use si ∈ S and ej ∈ E
to represent the geographical locations of a service and an

engine. The services and engines can be deployed in the

same location. Let Eu ⊂ E denote the engines used in the

workflow and |Eu| ≥ 1 is the number of used engines.

The size of a service’s input is insi and of the output is

outsi . While these do not indicate the actual size of the data,

the ratio of the input and output data is captured.

A workflow needs to specify data movement between

web services. For a workflow with n services, we choose

to denote this as a set of pairs WF = {(si, sj), · · · }, where

i ∈ {1, 2, · · · , n − 1}, j ∈ {2, 3, · · · , n} and i �= j. The

former service in the pair produces data that is consumed

by the latter. We define p(si) ⊂ S as a set of web services

immediately preceding si, or in other words the services that

produce inputs for si. If a service sj ∈ S does not have any

preceding services, then p(sj) = ∅.
The cost of moving one unit of data between services and

engines is represented as:

ci,j =

⎧⎨
⎩

0 if i = j and i, j ∈ E
∞ if i, j ∈ S
0 < ci,j <∞ otherwise

(1)

We assume that there is no cost for communicating between

the same engine as data already resides on it. The costs of

moving data between two web services is infinity since they

cannot communicate with each other without the mediation

of an engine. Otherwise, the cost for communicating be-

tween a service and an engine or between one engine and

another engine is estimated before the deployment of the

workflow.

We define esi ∈ E as the engine invoking a service si ∈
S. The cost to invoke a service is the time it takes for input

data to travel from an engine to a service and for the output

data from the service back to the engine. This cost is defined

as:

invoCostsi = cesi ,si × insi + csi,esi × outsi (2)

We define costUpTo as the total data movement cost

which is the sum of the cost to invoke a service and the

cost to move the data required by the service to the invoking

engine. A fan-in pattern (multiple web services produce

inputs for a single web service), can be executed in parallel.

Hence, the cost of moving data to an engine that invokes

the consuming web services is represented as:

costUpTosi = max
sj∈p(si)

(costUpTo(sj) + cesj ,esi × outsj )

+ invoCostsi
(3)

The equation indicates that there is a dependency between

the location of the consuming engine and the location of the

producing engines.

The total data movement time is calculated as:

total movement = maxsi∈S(costUpTosi) (4)

In most cases total movement is the value of costUpTo
of the last service in the workflow. However, if there are

multiple independent services at the end of the workflow,

we need to select the largest costUpTo value among them

as the total movement.
We define costEngineOverhead as the penalty for

adding any additional engines in the workflow. This value

can be used to limit the number of engines that a user

requires; adding more engines can increase costs. Hence,

the total overhead in the workflow is:

total overhead = costEngineOverhead∗ (|Eu|−1) (5)

Now the total cost of executing a workflow is

total cost = total movement+ total overhead (6)

The optimal deployment plan that needs to be generated

is the mapping between the services and the engines (the set

of esi for si ∈ S) so that total cost can be minimised.

B. Solving the Problem Using Constraint Programming

In order to solve the above problem, we first need to

represent the mathematical model in a suitable format for

a Constraint Programming (CP) solver. Producing a cor-

rect and efficient CP model for a problem like this is a

challenging task. Rather than crafting a constraint model by

hand, we employ the automated constraint modelling system

CONJURE [4]. In order to do so, we specify the problem in

ESSENCE [5] which is a high level problem specification

language which offers abstract mathematical constructs and

a rich collection of operators, i.e. users are not required to

make the large number of low level modelling decisions they

would otherwise need to make.

III. FRAMEWORK

As shown in Figure 2 the framework has three com-

ponents, namely the Constraint Solver, the Parser and the

Executor, and three script files, namely the Invocation De-

scription, the Deployment Plan and the Execution Plan.

812812812
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Script files are chosen as the data transfer mechanism since

they facilitate reproducibility for future experiments with-

out running the whole process again, and interoperability

between the components.

Figure 2: Framework Architecture

The Constraint Solver uses the workflow WF , the inputs

and outputs (ins and outs, where s ∈ S) and the cost c be-

tween web services and engines to produce the Deployment

Plan. This output is then used by the Parser along with the

Invocation Description to generate an Execution Plan, which

is then executed by the Executor. In order to demonstrate the

process in which a execution plan is produced for a given

workflow, we focus on explaining the script files instead of

the components.

A. Invocation Description

An invocation description describes the data flow be-

tween services and how each service is invoked. Since

we use RESTful web services which are not described by

a common interface, like WSDL for SOAP services, the

names of all web services’ parameters must be specified.

Each line represents one service invocation including service

name (e.g. URL), one or more inputs to the service (each

input is represented as a pair of a parameter name and a

corresponding value) and the output. The input parameter

and value by default are strings referring to the actual values

stored inside the engine. This can also be passed-by-value

by wrapping the parameter or value inside single quotes (’).

The output value is a reference to the memory of the engine.

ws_1 ’param_1’:’0’ value_2
ws_2 ’param_2’:value_2 value_3

Figure 3: Invocation Description

Figure 3 presents an invocation description of the work-

flow which is presented in Figure 1a and consists of two

web services ws_1 and ws_2, each of which requires one

parameter named param_1 and param_2 respectively. A

zero value is passed to ws_1 whose output is stored and

referenced by the key value_2. The data referenced by

value_2 is the input for ws_2. The final result produced

by ws_2 is stored in value_3.

B. Deployment Plan

Based on the inputs to the Constraint Solver, which are

WF , in, out and the cost c, a deployment plan is produced,

it is the mapping between the web services and the cloud

regions in which the engines are deployed. The cloud regions

and web services have a one to many relationship; one region

can have many web services, but a web service can only be

assigned to one region.

For example, Figure 4 shows that ws_1 and ws_2 are

mapped to region_1 and region_2 respectively. As a

result, ws_1 will be invoked by an engine in region_1.

ws_1 --> region_1
ws_2 --> region_2

Figure 4: Deployment Plan

C. Execution Plan

In order to execute a workflow, based on the invocation

description and the deployment plan, an execution plan is

created; an example is shown in Figure 5. It describes the

service invocations performed by each engine and additional

steps to move data between them. Moreover, it contains

information required to deploy the engines on the cloud.

1 # define hosts
2 host region_1 aws ubuntu region_1_ip
3 host region_2 aws ubuntu _
4
5 # define engines
6 serv eng_1 engine
7 serv eng_2 engine
8
9 # deploy engines on hosts

10 depl eng_1 region_1
11 depl eng_2 region_2
12
13 # invocations for engine_1
14 eng_1 ws_1 ’param_1’:’0’ value_2
15 eng_1 eng_2.Setter ’value_2’:value2 ack_1
16
17 # invocation for engine_2
18 eng_2 ws_2 ’param_2’:value_2 value_3

Figure 5: Execution Plan

Lines 2 and 3 describe the cloud regions in which the

engines are deployed and includes the data required for the

deployment such as cloud provider (e.g. aws), the username

to access the remote machine (e.g. ubuntu) and the ip

address or host name of the instance (e.g. region 1 ip).

In Line 3, the ip address of region 2 is to denote that it

is currently unknown, i.e. the instance is not running. When

the execution begins the framework will start the cloud VM

and replace with the actual ip address. Engine definitions

813813813
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(a) Workflow 1 (b) Workflow 2

(c) Workflow 3 (d) Workflow 4

Figure 6: Four sample workflows

are presented in lines 6 and 7. engine refers to an actual

application which will be deployed on the cloud. eng_1
and eng_2 are aliases given to the engines deployed in

the cloud regions. Lines 10 and 11 describe the deployment

of engines to hosts. Lines 14 and 18 represent the service

invocations, which are quite similar to Figure 3. The only

difference is that the engine alias is added at the beginning

of each line to denote an engine performing an invocation.

Line 15 is an additional step to move the output of ws_1
from eng_1 to eng_2.

D. Workflow Engine

There are many existing workflow engines such as DAG-

Man2 or Taverna3. However, they have many complex fea-

tures and are difficult to set up on remote machines. Hence,

we decided to implement a light-weight engine which can

be easily deployed on any remote machines

Our engine is a RESTful web service which can invoke

other RESTful web services. It can be easily deployed on a

remote machine by copying and executing its source code.

Data transfer between engines is performed as a normal

service invocation which contains transferred data as its

input, e.g. line 15 of Figure 5. To support parallelism, for ev-

ery successful invocation, the engine finds other invocations

whose all input data is available and invokes them.

IV. EXPERIMENTAL STUDIES

A. Experiment Setup

In order to investigate the performance of our model

and framework, we performed experiments on four sample

workflows. These comprise between eight and eleven web

services, which we have deployed across all eight EC2

regions as summarised in Figure 6, in which the colour of a

2http://research.cs.wisc.edu/htcondor/dagman/dagman.html
3http://www.taverna.org.uk/

node (i.e. service) represents its location. We focus primarily

on Directed Acyclic Graphs (DAG) based workflows since

these are heavily used in the scientific community.We also

select eight available AWS regions as potential locations to

deploy the workflow engines.

Our workflows were generated based on a combination of

three generic patterns found in all Directed Acyclic Graph

(DAG) based scientific workflows: linear (sequence), fan-

in (multiple sources mapped to one sink) and fan-out (one

source mapped to multiple sinks). The generated workflows

are realistic because scientists usually have no choice over

the ordering of third-party web services as they must be

used in a certain order to execute an end-to-end distributed

application. Moreover, the workflow services are normally

left unmaintained after the execution is completed.

Prior to our experiment, the mean Round-Trip Time (RTT)

between the regions was measured and used as the costs of

moving data for the constraint model. For each workflow, we

used the CP model and the costEngineOverhead value in

order to have multiple solutions using different numbers of

engines. In other words, we tried to execute the workflow

using from 1 to multiple engines.

For comparison, we measured the execution time of these

workflows using two naive (yet realistic) approaches: a

single orchestration engine running at the user’s host (in our

case St Andrews), and a single orchestration engine running

on the nearest EC2 region (in our case, Dublin).

B. Results and Discussion

Figure 7 displays the results of our experiments. The x-

axis shows the number of engines while the y-axis presents

the total execution time.

The naive solutions are presented by blue (and red), when

the engine was deployed in St Andrews (and Dublin), thick

lines. Since we assumed that the communication between

engines at the same location is instantaneous and the naive

deployments are centralised, they are therefore not affected

by the number of engines, hence, a straight line plot.

The green dashed line represents the execution time of

our solutions. Each deployment was executed 15 times.

Each point in the plots represents the mean of these ex-

ecutions (excluding the slowest 5 executions to account

for network instability) and the error bars show the stan-

dard deviation. The number at each point represents the

costEngineOverhead value.

It is immediately evident that the solutions provided

by our framework performed considerably and consistently

better than the naive single-orchestrator approaches. Even

if only one engine is allowed our framework can produce

a solution with better performance. For all workflows, the

solution with more engines always had the better execution

time; using more engines reduced the cost of moving data

between web services. Moreover, none of the workflows

used all of 8 possible locations as the optimal solution.

814814814
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(a) Workflow 1 (b) Workflow 2 (c) Workflow 3 (d) Workflow 4

Figure 7: Execution times for the workflows

Workflow 1 2 3 4

Minimum 1.7 1.6 1.6 1.3

Maximum 2.3 2.5 1.5 2.0

Figure 8: Minimum and Maximum speedup when compared

to nearest execution

In other words, completely decentralising the workflow, i.e.

assigning each service to an engine deployed at the same

host as it, does not guarantee the best performance.

In order to compare the improvement between using

our framework and the naive solutions, we calculated the

speedup between the plan in which a centralised engine is

deployed at Dublin, the least optimal (one engine) and most

optimal (maximum number of engine possible). The results

are presented in Figure 8, which shows that our framework

is able to improve the performance from 1.3 to 2.5 times.

Figure 9 presents the execution plans using 1, 2 and 4

engines, respectively, for the workflow number 4 in Figure

6. Notably, the colour does not represent the location of

a service but the location of an engine invoking it. The

number inside each node (i.e service) is the number of

seconds it takes to finish invoking that service after starting

executing the workflow, i.e. the actual costUpTo value.

Which also means that the number in the last node is the

total execution time of the workflow. Figure 9 shows that by

using more engines, the workflow is partitioned into smaller

and dependent sub-workflows. The result of this partitioning

is the lower costUpTo at most of the services. Notably, the

goal of the CP model is to minimise the costUpTo of the

last service in the workflow, not all of them. Hence, even

though there is an service in 9c with higher costUpTo values

than the same ones in 9b, its total execution time (i.e. the

costUpTo of its last service) is still lower.

V. RELATED WORK

1) Decentralised Workflow Orchestration: In [6], the au-

thors decentralised a workflow by modifying the services to

transfer data between services. Instead of directly changing

the services, the authors of [7] proposed an additional

layer which stored and triggered invocation if all data was

available. However, these studies cannot be easily applied

when services are managed by external organisations and

do not allow them to be modified. In our previous work [8],

we proposed a framework in which a proxy was assigned

to one or more services and invoked them based on instruc-

tions given by a centralised engine. By deploying proxies

near their services, it reduced the data transfer overhead.

Multiple proxies mitigate the bottleneck caused by using

a single centralised controller. In this paper, instead of

one engine controlling multiple proxies, we used multiple

engines without proxies, each of which executes a sub-

workflow. Moreover, we aimed to find the optimal locations

to deploy engines.

2) Workflow Partitioning: Workflow partitioning aims to

split a workflow to smaller fragments, each of which is

executed by an engine. Pegasus [9] has many advanced

mechanisms for partitioning and resource mapping. How-

ever, it does not consider the geographical distribution of

services. Similarly, in [10], the services are grouped based

on the functional similarity between them and each group is

assigned one engine. The research aimed at reducing the

communication traffic between web services and engines

without taking into account the network distance. Hence, it

is unclear if this approach can reduce total execution time.

3) Data and Location Aware Workflow Execution: The

authors of [11] proposed approaches to dynamically re-

locate data and task in order to achieve data locality/proxim-

ity. However, if data and services are managed by external

organisations they cannot be re-located and these approaches

may not be applicable. Our previous work [3] aimed to find

an optimal location to deploy a centralised engine based on

both geographical and network distances. In this paper, we

further expand our research by decentralising a workflow

while taking into account its geographic distribution. We

also consider the parallelism of workflow execution instead

of assuming that the execution is sequential.

815815815
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(a) One Engine (b) Two Engines (c) Four Engines

Figure 9: Execution Plans for Workflow 4

VI. CONCLUSION

This paper discussed how to improve the performance of

highly distributed workflows by decentralising the orches-

tration and selecting cloud locations to deploy workflow

engines. The workflow deployment problem is modelled and

solved using constraint programming in which a constraint

solver produces the optimal deployment plan.

By comparing our approach to traditional ones in which

the centralised workflow engine was deployed at either our

home location (St Andrews, Scotland) or the nearest AWS

region (Dublin, Ireland), it was evident that our approach

was able to reduce the data movement cost, and thus resulted

in better execution time. Our approach demonstrated that

RTT is a reliable metric to calculate network distance.

We developed a framework for our experiments which

generates an optimal plan for executing workflows, manages

cloud VMs and executes workflows. A lightweight workflow

engine was also developed, which can be easily deployed

on any remote machine and is able to perform multiple

independent service invocations concurrently.

In the future, we aim to estimate the actual time for web

service invocations to schedule workflow deployment during

runtime instead of starting all VMs ahead of time. We also

plan to develop a dynamic monitoring and planning mech-

anism to adapt to network changes during the execution.
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